کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4604953 1337533 2016 26 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Consistency analysis of an empirical minimum error entropy algorithm
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات آنالیز ریاضی
پیش نمایش صفحه اول مقاله
Consistency analysis of an empirical minimum error entropy algorithm
چکیده انگلیسی

In this paper we study the consistency of an empirical minimum error entropy (MEE) algorithm in a regression setting. We introduce two types of consistency. The error entropy consistency, which requires the error entropy of the learned function to approximate the minimum error entropy, is shown to be always true if the bandwidth parameter tends to 0 at an appropriate rate. The regression consistency, which requires the learned function to approximate the regression function, however, is a complicated issue. We prove that the error entropy consistency implies the regression consistency for homoskedastic models where the noise is independent of the input variable. But for heteroskedastic models, a counterexample is used to show that the two types of consistency do not coincide. A surprising result is that the regression consistency is always true, provided that the bandwidth parameter tends to infinity at an appropriate rate. Regression consistency of two classes of special models is shown to hold with fixed bandwidth parameter, which further illustrates the complexity of regression consistency of MEE. Fourier transform plays crucial roles in our analysis.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Applied and Computational Harmonic Analysis - Volume 41, Issue 1, July 2016, Pages 164–189
نویسندگان
, , , ,