کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4604966 1337534 2016 24 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Hard thresholding pursuit algorithms: Number of iterations
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات آنالیز ریاضی
پیش نمایش صفحه اول مقاله
Hard thresholding pursuit algorithms: Number of iterations
چکیده انگلیسی

The Hard Thresholding Pursuit algorithm for sparse recovery is revisited using a new theoretical analysis. The main result states that all sparse vectors can be exactly recovered from compressive linear measurements in a number of iterations at most proportional to the sparsity level as soon as the measurement matrix obeys a certain restricted isometry condition. The recovery is also robust to measurement error. The same conclusions are derived for a variation of Hard Thresholding Pursuit, called Graded Hard Thresholding Pursuit, which is a natural companion to Orthogonal Matching Pursuit and runs without a prior estimation of the sparsity level. In addition, for two extreme cases of the vector shape, it is shown that, with high probability on the draw of random measurements, a fixed sparse vector is robustly recovered in a number of iterations precisely equal to the sparsity level. These theoretical findings are experimentally validated, too.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Applied and Computational Harmonic Analysis - Volume 41, Issue 2, September 2016, Pages 412–435
نویسندگان
, , ,