کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4605228 1337556 2012 26 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Inviscid limit for the derivative Ginzburg–Landau equation with small data in modulation and Sobolev spaces
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات آنالیز ریاضی
پیش نمایش صفحه اول مقاله
Inviscid limit for the derivative Ginzburg–Landau equation with small data in modulation and Sobolev spaces
چکیده انگلیسی

Applying the frequency-uniform decomposition technique, we study the Cauchy problem for derivative Ginzburg–Landau equation , where δ∈N, are complex constant vectors, ν∈[0,1], α∈C. For n≥3, we show that it is uniformly global well posed for all ν∈[0,1] if initial data u0 in modulation space and Sobolev spaces Hs+n/2 (s>3) and ‖u0‖L2 is small enough. Moreover, we show that its solution will converge to that of the derivative Schrödinger equation in C(0,T;L2) if ν→0 and u0 in or Hs+n/2 with s>4. For n=2, we obtain the local well-posedness results and inviscid limit with the Cauchy data in (s>3) and ‖u0‖L1≪1.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Applied and Computational Harmonic Analysis - Volume 32, Issue 2, March 2012, Pages 197-222