کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4605308 1337562 2010 16 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Numerical computation of complex geometrical optics solutions to the conductivity equation
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات آنالیز ریاضی
پیش نمایش صفحه اول مقاله
Numerical computation of complex geometrical optics solutions to the conductivity equation
چکیده انگلیسی

A numerical method is introduced for the evaluation of complex geometrical optics (cgo) solutions to the conductivity equation ∇⋅σ∇u(⋅,k)=0 in R2 for piecewise smooth conductivities σ. Here k is a complex parameter. The algorithm is based on the solution by Astala and Päivärinta (2006) [1] of Calderón's inverse conductivity problem and involves the solution of a Beltrami equation in the plane with an exponential asymptotic condition. The numerical strategy is to solve a related periodic problem using fft and gmres and show that the solutions agree on the unit disc. The cgo solver is applied to the problem of computing nonlinear Fourier transforms corresponding to nonsmooth conductivities. These computations give new insight into the D-bar method for the medical imaging technique of electric impedance tomography. Furthermore, the asymptotic behavior of the cgo solutions as k→∞ is studied numerically. The evidence so gained raises interesting questions about the best possible decay rates for the subexponential growth argument in the uniqueness proof for Calderón's problem with L∞ conductivities.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Applied and Computational Harmonic Analysis - Volume 29, Issue 1, July 2010, Pages 2-17