کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4605402 | 1337569 | 2010 | 16 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Uncertainty principles on compact Riemannian manifolds
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
آنالیز ریاضی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Based on a result of Rösler and Voit for ultraspherical polynomials, we derive an uncertainty principle for compact Riemannian manifolds M. The frequency variance of a function in L2(M) is therein defined by means of the radial part of the Laplace–Beltrami operator. The proof of the uncertainty rests upon Dunkl theory. In particular, a special differential-difference operator is constructed which plays the role of a generalized root of the radial Laplacian. Subsequently, we prove with a family of Gaussian-like functions that the deduced uncertainty is asymptotically sharp. Finally, we specify in more detail the uncertainty principles for well-known manifolds like the d-dimensional unit sphere and the real projective space.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Applied and Computational Harmonic Analysis - Volume 29, Issue 2, September 2010, Pages 182-197
Journal: Applied and Computational Harmonic Analysis - Volume 29, Issue 2, September 2010, Pages 182-197