کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4605402 1337569 2010 16 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Uncertainty principles on compact Riemannian manifolds
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات آنالیز ریاضی
پیش نمایش صفحه اول مقاله
Uncertainty principles on compact Riemannian manifolds
چکیده انگلیسی

Based on a result of Rösler and Voit for ultraspherical polynomials, we derive an uncertainty principle for compact Riemannian manifolds M. The frequency variance of a function in L2(M) is therein defined by means of the radial part of the Laplace–Beltrami operator. The proof of the uncertainty rests upon Dunkl theory. In particular, a special differential-difference operator is constructed which plays the role of a generalized root of the radial Laplacian. Subsequently, we prove with a family of Gaussian-like functions that the deduced uncertainty is asymptotically sharp. Finally, we specify in more detail the uncertainty principles for well-known manifolds like the d-dimensional unit sphere and the real projective space.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Applied and Computational Harmonic Analysis - Volume 29, Issue 2, September 2010, Pages 182-197