کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4605622 | 1337587 | 2008 | 10 صفحه PDF | دانلود رایگان |

Wavelet shrinkage is a strategy to obtain a nonlinear approximation to a given signal. The shrinkage method is applied in different areas, including data compression, signal processing and statistics. The almost everywhere convergence of resulting wavelet series has been established in [T. Tao, On the almost everywhere convergence of wavelet summation methods, Appl. Comput. Harmon. Anal. 3 (1996) 384–387] and [T. Tao, B. Vidakovic, Almost everywhere behavior of general wavelet shrinkage operators, Appl. Comput. Harmon. Anal. 9 (2000) 72–82]. With a representation of f′ in terms of wavelet coefficients of f, we are interested in considering the influence of wavelet thresholding to f on its derivative f′. In this paper, for the representation of differential operators in nonstandard form, we establish the almost everywhere convergence of estimators as threshold tends to zero.
Journal: Applied and Computational Harmonic Analysis - Volume 25, Issue 2, September 2008, Pages 266-275