کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4605622 1337587 2008 10 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Convergence of wavelet thresholding estimators of differential operators
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات آنالیز ریاضی
پیش نمایش صفحه اول مقاله
Convergence of wavelet thresholding estimators of differential operators
چکیده انگلیسی

Wavelet shrinkage is a strategy to obtain a nonlinear approximation to a given signal. The shrinkage method is applied in different areas, including data compression, signal processing and statistics. The almost everywhere convergence of resulting wavelet series has been established in [T. Tao, On the almost everywhere convergence of wavelet summation methods, Appl. Comput. Harmon. Anal. 3 (1996) 384–387] and [T. Tao, B. Vidakovic, Almost everywhere behavior of general wavelet shrinkage operators, Appl. Comput. Harmon. Anal. 9 (2000) 72–82]. With a representation of f′ in terms of wavelet coefficients of f, we are interested in considering the influence of wavelet thresholding to f on its derivative f′. In this paper, for the representation of differential operators in nonstandard form, we establish the almost everywhere convergence of estimators as threshold tends to zero.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Applied and Computational Harmonic Analysis - Volume 25, Issue 2, September 2008, Pages 266-275