کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4606870 1631405 2016 17 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Almost everywhere convergence of Bochner–Riesz means with critical index for Dunkl transforms
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات آنالیز ریاضی
پیش نمایش صفحه اول مقاله
Almost everywhere convergence of Bochner–Riesz means with critical index for Dunkl transforms
چکیده انگلیسی

Let BRδ(hκ2;f), (R>0R>0) denote the Bochner–Riesz means of order δ>−1δ>−1 for the Dunkl transform of f∈L1(Rd;hκ2dx) associated with the weight function hκ2(x):=∏j=1d|xj|2κj on RdRd, where κ:=(κ1,⋯,κd)∈[0,∞)dκ:=(κ1,⋯,κd)∈[0,∞)d. This paper shows that if κ≠0κ≠0, then the Bochner–Riesz mean BRδ(hκ2;f)(x) of each function f∈L1(Rd;hκ2dx) converges almost everywhere to f(x)f(x) on RdRd at the critical index δ=λκ:=d−12+∑j=1dκj as R→∞R→∞. As is well-known in classical analysis, this result is no longer true in the unweighted case where κ=0κ=0, hκ(x)≡1hκ(x)≡1, and BRδ(hκ2;f) is the Bochner–Riesz mean of the Fourier transform.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Approximation Theory - Volume 205, May 2016, Pages 43–59
نویسندگان
, ,