کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4607018 | 1631418 | 2015 | 30 صفحه PDF | دانلود رایگان |

Let ωφk(f,δ)w,Lq be the Ditzian–Totik modulus with weight ww, MkMk be the cone of kk-monotone functions on (−1,1)(−1,1), i.e., those functions whose kkth divided differences are nonnegative for all selections of k+1k+1 distinct points in (−1,1)(−1,1), and denote E(X,Pn)w,q:=supf∈XinfP∈Pn‖w(f−P)‖LqE(X,Pn)w,q:=supf∈XinfP∈Pn‖w(f−P)‖Lq, where PnPn is the set of algebraic polynomials of degree at most nn. Additionally, let wα,β(x):=(1+x)α(1−x)βwα,β(x):=(1+x)α(1−x)β be the classical Jacobi weight, and denote by Spα,β the class of all functions such that ‖wα,βf‖Lp=1‖wα,βf‖Lp=1.In this paper, we determine the exact behavior (in terms of δδ) of supf∈Spα,β∩Mkωφk(f,δ)wα,β,Lq for 1≤p,q≤∞1≤p,q≤∞ (the interesting case being q
Journal: Journal of Approximation Theory - Volume 192, April 2015, Pages 102–131