کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4607092 1631425 2014 17 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Approximation by sums of piecewise linear polynomials
ترجمه فارسی عنوان
تقریب با مبالغ چند جمله ای خطی قطعی
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات آنالیز ریاضی
چکیده انگلیسی

We present two partitioning algorithms that allow a sum of piecewise linear polynomials over a number of overlaying convex partitions of the unit cube ΩΩ in RdRd to approximate a function f∈Wp3(Ω) with the order N−6/(2d+1)N−6/(2d+1) in the LpLp-norm, where NN is the total number of cells of all partitions, which makes a marked improvement over the N−2/dN−2/d order achievable on a single convex partition. The gradient of ff is approximated with the order N−3/(2d+1)N−3/(2d+1). The first algorithm creates dd convex partitions and relies on the knowledge of the eigenvectors of the average Hessians of ff over the cells of an auxiliary uniform partition, whereas the second algorithm with d+12 convex partitions is independent of ff. In addition, we also give an ff-independent partitioning algorithm for a sum of dd piecewise constants that achieves the approximation order N−2/(d+1)N−2/(d+1).

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Approximation Theory - Volume 185, September 2014, Pages 107–123
نویسندگان
, ,