کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4607272 1631439 2013 20 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Riesz polarization inequalities in higher dimensions
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات آنالیز ریاضی
پیش نمایش صفحه اول مقاله
Riesz polarization inequalities in higher dimensions
چکیده انگلیسی

We derive bounds and asymptotics for the maximum Riesz polarization quantity Mnp(A)≔maxx1,x2,…,xn∈Aminx∈A∑j=1n1∣x−xj∣p (which is nn times the Chebyshev constant) for quite general sets A⊂RmA⊂Rm with special focus on the unit sphere and unit ball. We combine elementary averaging arguments with potential theoretic tools to formulate and prove our results. We also give a discrete version of the recent result of Hardin, Kendall, and Saff which solves the Riesz polarization problem for the case when AA is the unit circle and p>0p>0, as well as provide an independent proof of their result for p=4p=4 that exploits classical polynomial inequalities and yields new estimates. Furthermore, we raise some challenging conjectures.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Approximation Theory - Volume 171, July 2013, Pages 128–147
نویسندگان
, ,