کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4607449 1337858 2011 14 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
An explicit class of min–max polynomials on the ball and on the sphere
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات آنالیز ریاضی
پیش نمایش صفحه اول مقاله
An explicit class of min–max polynomials on the ball and on the sphere
چکیده انگلیسی

Let Πn+m−1d denote the set of polynomials in dd variables of total degree less than or equal to n+m−1n+m−1 with real coefficients and let P(x)P(x),x=(x1,…,xd)x=(x1,…,xd), be a given homogeneous polynomial of degree n+mn+m in dd variables with real coefficients. We look for a polynomial p∗∈Πn+m−1d such that P−p∗P−p∗ has least max norm on the unit ball and the unit sphere in dimension dd,d≥2d≥2, and call P−p∗P−p∗ a min–max polynomial. For every n,m∈Nn,m∈N, we derive min–max polynomials for PP of the form P(x)=Pn(x′)xdm, with x′=(x1,…,xd−1)x′=(x1,…,xd−1), where Pn(x′)Pn(x′) is the product of homogeneous harmonic polynomials in two variables. In particular, for every m∈Nm∈N, min–max polynomials for the monomials x1…xd−1xdm are obtained. Furthermore, we give min–max polynomials for the case where Pn(x′)=‖x′‖nTn(〈a′,x′〉/‖x′‖)Pn(x′)=‖x′‖nTn(〈a′,x′〉/‖x′‖),a′=(a1,…,ad−1)∈Rd−1a′=(a1,…,ad−1)∈Rd−1,‖a′‖=1‖a′‖=1, and TnTn denotes the Chebyshev polynomial of the first kind.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Approximation Theory - Volume 163, Issue 6, June 2011, Pages 724–737
نویسندگان
, ,