کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4607567 1337869 2011 37 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
On the convergence of expansions in polyharmonic eigenfunctions
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات آنالیز ریاضی
پیش نمایش صفحه اول مقاله
On the convergence of expansions in polyharmonic eigenfunctions
چکیده انگلیسی

We consider expansions of smooth, nonperiodic functions defined on compact intervals in eigenfunctions of polyharmonic operators equipped with homogeneous Neumann boundary conditions. Having determined asymptotic expressions for both the eigenvalues and eigenfunctions of these operators, we demonstrate how these results can be used in the efficient computation of expansions. Next, we consider the convergence. We establish the key advantage of such expansions over classical Fourier series–namely, both faster and higher-order convergence–and provide a full asymptotic expansion for the error incurred by the truncated expansion. Finally, we derive conditions that completely determine the convergence rate.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Approximation Theory - Volume 163, Issue 11, November 2011, Pages 1638–1674
نویسندگان
,