کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4607811 1337885 2010 21 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Zeros of generalized Rogers–Ramanujan series: Asymptotic and combinatorial properties
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات آنالیز ریاضی
پیش نمایش صفحه اول مقاله
Zeros of generalized Rogers–Ramanujan series: Asymptotic and combinatorial properties
چکیده انگلیسی

In this paper we study the properties of coefficients appearing in the series expansions for zeros of generalized Rogers–Ramanujan series. Our primary purpose is to address several conjectures made by M.E.H. Ismail and C. Zhang. We prove that the coefficients in the series expansion of each zero approach rational multiples of ππ and π2π2 as q→1−q→1−. We also show that certain polynomials arising in connection with the zeros of Rogers–Ramanujan series generalize the coefficients appearing in the Taylor expansion of the tangent function. These polynomials provide an enumeration for alternating permutations different from that given by the classical qq-tangent numbers. We conclude the paper with a method for inverting an elliptic integral associated with the zeros of generalized Rogers–Ramanujan series. Our calculations provide an efficient algorithm for the computation of series expansions for zeros of generalized Rogers–Ramanujan series.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Approximation Theory - Volume 162, Issue 5, May 2010, Pages 910–930
نویسندگان
,