کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4607821 1337885 2010 22 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Functions with prescribed best linear approximations
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات آنالیز ریاضی
پیش نمایش صفحه اول مقاله
Functions with prescribed best linear approximations
چکیده انگلیسی

A common problem in applied mathematics is that of finding a function in a Hilbert space with prescribed best approximations from a finite number of closed vector subspaces. In the present paper we study the question of the existence of solutions to such problems. A finite family of subspaces is said to satisfy the Inverse Best Approximation Property (IBAP) if there exists a point that admits any selection of points from these subspaces as best approximations. We provide various characterizations of the IBAP in terms of the geometry of the subspaces. Connections between the IBAP and the linear convergence rate of the periodic projection algorithm for solving the underlying affine feasibility problem are also established. The results are applied to investigate problems in harmonic analysis, integral equations, signal theory, and wavelet frames.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Approximation Theory - Volume 162, Issue 5, May 2010, Pages 1095–1116
نویسندگان
, ,