کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4607854 1337887 2009 13 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Splitting methods for SU(N) loop approximation
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات آنالیز ریاضی
پیش نمایش صفحه اول مقاله
Splitting methods for SU(N) loop approximation
چکیده انگلیسی

The problem of finding the correct asymptotic rate of approximation by polynomial loops in dependence of the smoothness of the elements of a loop group seems not well-understood in general. For matrix Lie groups such as SU(N), it can be viewed as a problem of nonlinearly constrained trigonometric approximation. Motivated by applications to optical FIR filter design and control, we present some initial results for the case of SU(N)-loops, N≥2N≥2. In particular, using representations via the exponential map and first order splitting methods, we prove that the best approximation of an SU(N)-loop belonging to a Hölder–Zygmund class Lipα, α>1/2α>1/2, by a polynomial SU(N)-loop of degree ≤n≤n is of the order O(n−α/(1+α))(n−α/(1+α)) as n→∞n→∞. Although this approximation rate is not considered final, to our knowledge it is the first general, nontrivial result of this type.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Approximation Theory - Volume 161, Issue 1, November 2009, Pages 174–186
نویسندگان
, ,