کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4607920 1631445 2009 17 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
On Ulyanov inequalities in Banach spaces and semigroups of linear operators
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات آنالیز ریاضی
پیش نمایش صفحه اول مقاله
On Ulyanov inequalities in Banach spaces and semigroups of linear operators
چکیده انگلیسی

Let X,Y be Banach spaces and {T(t):t≥0} be a consistent, equibounded semigroup of linear operators on X as well as on Y; it is assumed that {T(t)} satisfies a Nikolskii type inequality with respect to X and Y:∥T(2t)f∥Y≲ϕ(t)∥T(t)f∥X. Then an abstract Ulyanov type inequality is derived between the (modified) K-functionals with respect to (X,DX((-A)α)) and (Y,DY((-A)α)),α>0, where A is the infinitesimal generator of {T(t)}. Particular choices of X,Y are Lorentz–Zygmund spaces, of {T(t)} are those connected with orthogonal expansions such as Fourier, spherical harmonics, Jacobi, Laguerre, Hermite series. Known characterizations of the K-functionals lead to concrete Ulyanov type inequalities. In particular, results of Ditzian and Tikhonov in the case , are partly covered.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Approximation Theory - Volume 160, Issues 1–2, September–October 2009, Pages 154-170