کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4607920 | 1631445 | 2009 | 17 صفحه PDF | دانلود رایگان |

Let X,Y be Banach spaces and {T(t):t≥0} be a consistent, equibounded semigroup of linear operators on X as well as on Y; it is assumed that {T(t)} satisfies a Nikolskii type inequality with respect to X and Y:∥T(2t)f∥Y≲ϕ(t)∥T(t)f∥X. Then an abstract Ulyanov type inequality is derived between the (modified) K-functionals with respect to (X,DX((-A)α)) and (Y,DY((-A)α)),α>0, where A is the infinitesimal generator of {T(t)}. Particular choices of X,Y are Lorentz–Zygmund spaces, of {T(t)} are those connected with orthogonal expansions such as Fourier, spherical harmonics, Jacobi, Laguerre, Hermite series. Known characterizations of the K-functionals lead to concrete Ulyanov type inequalities. In particular, results of Ditzian and Tikhonov in the case , are partly covered.
Journal: Journal of Approximation Theory - Volume 160, Issues 1–2, September–October 2009, Pages 154-170