کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4607921 1631445 2009 16 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Interlacing and spacing properties of zeros of polynomials, in particular of orthogonal and Lq-minimal polynomials, q∈[1,∞]
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات آنالیز ریاضی
پیش نمایش صفحه اول مقاله
Interlacing and spacing properties of zeros of polynomials, in particular of orthogonal and Lq-minimal polynomials, q∈[1,∞]
چکیده انگلیسی

Let be a sequence of polynomials with real coefficients such that uniformly for ϕ∈[α-δ,β+δ] with G(eiϕ)≠0 on [α,β], where 0⩽α<β⩽π and δ>0. First it is shown that the zeros of are dense in [α,β], have spacing of precise order π/n and are interlacing with the zeros of pn+1(cosϕ) on [α,β] for every n⩾n0. Let be another sequence of real polynomials with uniformly on [α-δ,β+δ] and on [α,β]. It is demonstrated that for all sufficiently large n the zeros of pn(cosϕ) and strictly interlace on [α,β] if on [α,β]. If the last expression is zero then a weaker kind of interlacing holds. These interlacing properties of the zeros are new for orthogonal polynomials also. For instance, for large n a simple criteria for interlacing of zeros of Jacobi polynomials on [-1+ɛ,1-ɛ], ɛ>0, is obtained. Finally it is shown that the results hold for wide classes of weighted Lq-minimal polynomials, q∈[1,∞], linear combinations and products of orthogonal polynomials, etc.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Approximation Theory - Volume 160, Issues 1–2, September–October 2009, Pages 171-186