کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4607939 | 1337891 | 2009 | 17 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
A C1C1 quadratic trivariate macro-element space defined over arbitrary tetrahedral partitions
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
آنالیز ریاضی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
In 1988, Worsey and Piper constructed a trivariate macro-element based on C1C1 quadratic splines defined over a split of a tetrahedron into 24 subtetrahedra. However, this local element can only be used to construct a corresponding macro-element spline space over tetrahedral partitions that satisfy some very restrictive geometric constraints. We show that by further refining their split, it is possible to construct a macro-element also based on C1C1 quadratic splines that can be used with arbitrary tetrahedral partitions. The resulting macro-element space is stable and provides full approximation power.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Approximation Theory - Volume 158, Issue 1, May 2009, Pages 126–142
Journal: Journal of Approximation Theory - Volume 158, Issue 1, May 2009, Pages 126–142
نویسندگان
Larry L. Schumaker, Tatyana Sorokina, Andrew J. Worsey,