کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4607948 1337892 2009 14 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Bregman distances and Klee sets
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات آنالیز ریاضی
پیش نمایش صفحه اول مقاله
Bregman distances and Klee sets
چکیده انگلیسی
In 1960, Klee showed that a subset of a Euclidean space must be a singleton provided that each point in the space has a unique farthest point in the set. This classical result has received much attention; in fact, the Hilbert space version is a famous open problem. In this paper, we consider Klee sets from a new perspective. Rather than measuring distance induced by a norm, we focus on the case when distance is meant in the sense of Bregman, i.e., induced by a convex function. When the convex function has sufficiently nice properties, then-analogously to the Euclidean distance case-every Klee set must be a singleton. We provide two proofs of this result, based on Monotone Operator Theory and on Nonsmooth Analysis. The latter approach leads to results that complement the work by Hiriart-Urruty on the Euclidean case.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Approximation Theory - Volume 158, Issue 2, June 2009, Pages 170-183
نویسندگان
, , , ,