کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4607963 1337893 2009 47 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Rational compacts and exposed quadratic irrationalities
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات آنالیز ریاضی
پیش نمایش صفحه اول مقاله
Rational compacts and exposed quadratic irrationalities
چکیده انگلیسی

If {ei}i=1g+1 are non-intersecting closed arcs on the unit circle TT then their union EE is called rational if all harmonic measures νE(ej)νE(ej) at ∞∞ are rational. It is known that the essential support suppess(σ) of a periodic measure σσ (i.e. the Verblunsky parameters of σσ are periodic) is rational and any rational EE is a rotation of suppess(σ) for a periodic σσ. Elementary proofs of these facts are given. The Schur function ff of a periodic σσ satisfies zA∗f2+(B−zB∗)f−A=0zA∗f2+(B−zB∗)f−A=0, where the pair (A,B)(A,B) of polynomials in zz is called a Wall pair for σσ. Then suppess(σ)={t∈T:|b+(t)|2⩽4ω}, b+=B+zB∗b+=B+zB∗, ω=C(E)2deg(b+)ω=C(E)2deg(b+), C(E)C(E) being the logarithmic capacity of EE. For any monic bb with roots on TT, b∗=bb∗=b, and ωω satisfying 0<4ω⩽mb2, where mbmb is the smallest local maximum of |b||b| on TT, there is a Wall pair (A,B)(A,B) such that b=B+zB∗b=B+zB∗ and suppess(σ)={t∈T:|b(t)|2⩽4ω} for any periodic σσ corresponding to (A,B)(A,B). The solutions to the equation b=B+zB∗b=B+zB∗ in BB related to Wall pairs are described. As a consequence we obtain the inverse Bernstein inequality for a separable polynomial bb with roots on TT: infT|b′|⩾0.5⋅mb⋅deg(b)infT|b′|⩾0.5⋅mb⋅deg(b). The inequality is precise. A complete description of essential supports of periodic measures is also given in terms of the phases   of Akhiezer’s multi-valued analytic function as well as separable monic polynomials related to it with roots on TT.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Approximation Theory - Volume 159, Issue 2, August 2009, Pages 243–289
نویسندگان
,