کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4608052 1337901 2008 22 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Localized bases in L2(0,1) and their use in the analysis of Brownian motion
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات آنالیز ریاضی
پیش نمایش صفحه اول مقاله
Localized bases in L2(0,1) and their use in the analysis of Brownian motion
چکیده انگلیسی

Motivated by problems on Brownian motion, we introduce a recursive scheme for a basis construction in the Hilbert space L2(0,1) which is analogous to that of Haar and Walsh. More generally, we find a new decomposition theory for the Hilbert space of square-integrable functions on the unit-interval, both with respect to Lebesgue measure, and also with respect to a wider class of self-similar measures μ. That is, we consider recursive and orthogonal decompositions for the Hilbert space L2(μ) where μ is some self-similar measure on [0,1]. Up to two specific reflection symmetries, our scheme produces infinite families of orthonormal bases in L2(0,1). Our approach is as versatile as the more traditional spline constructions. But while singly generated spline bases typically do not produce orthonormal bases, each of our present algorithms does.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Approximation Theory - Volume 151, Issue 1, March 2008, Pages 20-41