کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4608141 | 1631446 | 2008 | 15 صفحه PDF | دانلود رایگان |

We consider the space Pn of orthogonal polynomials of degree n on the unit disc for a general radially symmetric weight function. We show that there exists a single orthogonal polynomial whose rotations through the angles , j=0,1,…,n forms an orthonormal basis for Pn, and compute all such polynomials explicitly. This generalises the orthonormal basis of Logan and Shepp for the Legendre polynomials on the disc.Furthermore, such a polynomial reflects the rotational symmetry of the weight in a deeper way: its rotations under other subgroups of the group of rotations forms a tight frame for Pn, with a continuous version also holding. Along the way, we show that other frame decompositions with natural symmetries exist, and consider a number of structural properties of Pn including the form of the monomial orthogonal polynomials, and whether or not Pn contains ridge functions.
Journal: Journal of Approximation Theory - Volume 150, Issue 2, February 2008, Pages 117-131