کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4608143 1631446 2008 22 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Some examples of orthogonal matrix polynomials satisfying odd order differential equations
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات آنالیز ریاضی
پیش نمایش صفحه اول مقاله
Some examples of orthogonal matrix polynomials satisfying odd order differential equations
چکیده انگلیسی

It is well known that if a finite order linear differential operator with polynomial coefficients has as eigenfunctions a sequence of orthogonal polynomials with respect to a positive measure (with support in the real line), then its order has to be even. This property no longer holds in the case of orthogonal matrix polynomials. The aim of this paper is to present examples of weight matrices such that the corresponding sequences of matrix orthogonal polynomials are eigenfunctions of certain linear differential operators of odd order. The weight matrices are of the formW(t)=tαe-teAttBtB*eA*t,W(t)=tαe-teAttBtB*eA*t,where A and B   are certain (nilpotent and diagonal, respectively) N×NN×N matrices. These weight matrices are the first examples illustrating this new phenomenon which are not reducible to scalar weights.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Approximation Theory - Volume 150, Issue 2, February 2008, Pages 153–174
نویسندگان
, ,