کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4608188 | 1337913 | 2007 | 9 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
The theta-Laguerre calculus formulation of the Li/Keiper constants
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
آنالیز ریاضی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
The Riemann hypothesis is equivalent to the nonnegativity of a sequence of real constants , that are certain logarithmic derivatives of the Riemann xi function evaluated at unity. We re-express these constants using the theta-Laguerre calculus. By using integral representations, we reformulate the coefficients together with a closely related sequence . We present a decomposition of the quantities aj into superdominant and subdominant components and give an upper bound on the former and an asymptotic lower bound for the latter. Sufficient estimation of these quantities would lead to confirmation of the Riemann hypothesis.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Approximation Theory - Volume 146, Issue 2, June 2007, Pages 267-275
Journal: Journal of Approximation Theory - Volume 146, Issue 2, June 2007, Pages 267-275