کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4608329 1337925 2007 51 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Biorthogonal polynomials for two-matrix models with semiclassical potentials
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات آنالیز ریاضی
پیش نمایش صفحه اول مقاله
Biorthogonal polynomials for two-matrix models with semiclassical potentials
چکیده انگلیسی

We consider the biorthogonal polynomials associated to the two-matrix model where the eigenvalue distribution has potentials V1,V2 with arbitrary rational derivative and whose supports are constrained on an arbitrary union of intervals (hard-edges). We show that these polynomials satisfy certain recurrence relations with a number of terms di depending on the number of hard-edges and on the degree of the rational functions . Using these relations we derive Christoffel–Darboux identities satisfied by the biorthogonal polynomials: this enables us to give explicit formulæ for the differential equation satisfied by di+1 consecutive polynomials, We also define certain integral transforms of the polynomials and use them to formulate a Riemann–Hilbert problem for (di+1)×(di+1) matrices constructed out of the polynomials and these transforms. Moreover, we prove that the Christoffel–Darboux pairing can be interpreted as a pairing between two dual Riemann–Hilbert problems.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Approximation Theory - Volume 144, Issue 2, February 2007, Pages 162-212