کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4608345 1337926 2007 19 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
The asymptotic properties of the spectrum of nonsymmetrically perturbed Jacobi matrix sequences
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات آنالیز ریاضی
پیش نمایش صفحه اول مقاله
The asymptotic properties of the spectrum of nonsymmetrically perturbed Jacobi matrix sequences
چکیده انگلیسی

Under the mild trace-norm assumptions, we show that the eigenvalues of an arbitrary (non-Hermitian) complex perturbation of a Jacobi matrix sequence (not necessarily real) are still distributed as the real-valued function 2cost on [0,π] which characterizes the nonperturbed case. In this way the real interval [-2,2] is still a cluster for the asymptotic joint spectrum and, moreover, [-2,2] still attracts strongly (with infinite order) the perturbed matrix sequence. The results follow in a straightforward way from more general facts that we prove in an asymptotic linear algebra framework and are plainly generalized to the case of matrix-valued symbols, which arises when dealing with orthogonal polynomials with asymptotically periodic recurrence coefficients.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Approximation Theory - Volume 144, Issue 1, January 2007, Pages 84-102