کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4608364 1337928 2006 16 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Cubature over the sphere S2 in Sobolev spaces of arbitrary order
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات آنالیز ریاضی
پیش نمایش صفحه اول مقاله
Cubature over the sphere S2 in Sobolev spaces of arbitrary order
چکیده انگلیسی

This paper studies numerical integration (or cubature) over the unit sphere S2⊂R3 for functions in arbitrary Sobolev spaces Hs(S2), s>1. We discuss sequences (Qm(n))n∈N of cubature rules, where (i) the rule Qm(n) uses m(n) points and is assumed to integrate exactly all (spherical) polynomials of degree ≤n and (ii) the sequence (Qm(n)) satisfies a certain local regularity property. This local regularity property is automatically satisfied if each Qm(n) has positive weights. It is shown that for functions in the unit ball of the Sobolev space Hs(S2), s>1, the worst-case cubature error has the order of convergence O(n-s), a result previously known only for the particular case . The crucial step in the extension to general s>1 is a novel representation of , where Pℓ is the Legendre polynomial of degree ℓ, in which the dominant term is a polynomial of degree n, which is therefore integrated exactly by the rule Qm(n). The order of convergence O(n-s) is optimal for sequences (Qm(n)) of cubature rules with properties (i) and (ii) if Qm(n) uses m(n)=O(n2) points.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Approximation Theory - Volume 141, Issue 2, August 2006, Pages 118-133