کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4608404 1631448 2006 34 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Ratio and relative asymptotics of polynomials orthogonal with respect to varying Denisov-type measures
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات آنالیز ریاضی
پیش نمایش صفحه اول مقاله
Ratio and relative asymptotics of polynomials orthogonal with respect to varying Denisov-type measures
چکیده انگلیسی

Let μ be a finite positive Borel measure with compact support consisting of an interval [c,d]⊂R plus a set of isolated points in R⧹[c,d], such that μ′>0 almost everywhere on [c,d]. Let {w2n},n∈Z+, be a sequence of polynomials, , with real coefficients whose zeros lie outside the smallest interval containing the support of μ. We prove ratio and relative asymptotics of sequences of orthogonal polynomials with respect to varying measures of the form dμ/w2n. In particular, we obtain an analogue for varying measures of Denisov's extension of Rakhmanov's theorem on ratio asymptotics. These results on varying measures are applied to obtain ratio asymptotics for orthogonal polynomials with respect to fixed measures on the unit circle and for multi-orthogonal polynomials in which the measures involved are of the type described above.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Approximation Theory - Volume 139, Issues 1–2, March–April 2006, Pages 223-256