کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4608424 1337932 2006 14 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
On the Bernstein–Bézier form of Jacobi polynomials on a simplex
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات آنالیز ریاضی
پیش نمایش صفحه اول مقاله
On the Bernstein–Bézier form of Jacobi polynomials on a simplex
چکیده انگلیسی

Here, we give a simple proof of a new representation for orthogonal polynomials over triangular domains which overcomes the need to make symmetry destroying choices to obtain an orthogonal basis for polynomials of fixed degree by employing redundancy. A formula valid for simplices with Jacobi weights is given, and we exhibit its symmetries by using the Bernstein–Bézier form. From it, we obtain the matrix representing the orthogonal projection onto the space of orthogonal polynomials of fixed degree with respect to the Bernstein basis. The entries of this projection matrix are given explicitly by a multivariate analogue of the hypergeometric function. Along the way we show that a polynomial is a Jacobi polynomial if and only if its Bernstein basis coefficients are a Hahn polynomial. We then discuss the application of these results to surface smoothing problems under linear constraints.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Approximation Theory - Volume 140, Issue 1, May 2006, Pages 86-99