کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4608455 1631465 2016 33 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
On the robustness of regularized pairwise learning methods based on kernels
ترجمه فارسی عنوان
بر پایه قوی بودن روش های یادگیری زوج قانونی بر اساس هسته
کلمات کلیدی
فراگیری ماشین، تابع از دست دادن انگشتان دست، ریسک منظم، نیرومندی
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات آنالیز ریاضی
چکیده انگلیسی

Regularized empirical risk minimization including support vector machines plays an important role in machine learning theory. In this paper regularized pairwise learning (RPL) methods based on kernels will be investigated. One example is regularized minimization of the error entropy loss which has recently attracted quite some interest from the viewpoint of consistency and learning rates. This paper shows that such RPL methods and also their empirical bootstrap have additionally good statistical robustness properties, if the loss function and the kernel are chosen appropriately. We treat two cases of particular interest: (i) a bounded and non-convex loss function and (ii) an unbounded convex loss function satisfying a certain Lipschitz type condition.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Complexity - Volume 37, December 2016, Pages 1–33
نویسندگان
, ,