کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4608568 1338362 2015 31 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
On the complexity of computing with planar algebraic curves
ترجمه فارسی عنوان
در پیچیدگی محاسبات با منحنی جبرانی مسطح
کلمات کلیدی
سیستم دوگانه، جدا کردن فرم، تجزیه و تحلیل توپولوژی، محاسبات ترتیب، تجزیه و تحلیل پیچیدگی، ارزیابی تقریبی چند نقطه ای
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات آنالیز ریاضی
چکیده انگلیسی

In this paper, we give improved bounds for the computational complexity of computing with planar algebraic curves. More specifically, for arbitrary coprime polynomials ff, g∈Z[x,y]g∈Z[x,y] and an arbitrary polynomial h∈Z[x,y]h∈Z[x,y], each of total degree less than nn and with integer coefficients of absolute value less than 2τ2τ, we show that each of the following problems can be solved in a deterministic way with a number of bit operations bounded by Õ(n6+n5τ), where we ignore polylogarithmic factors in nn and ττ:
• The computation of isolating regions in  C2C2for all complex solutions   of the system f=g=0f=g=0,
• the computation of a separating form   for the solutions of f=g=0f=g=0,
• the computation of the sign of  hh at all real valued solutions of f=g=0f=g=0, and
• the computation of the topology   of the planar algebraic curve CC defined as the real valued vanishing set of the polynomial  ff. Our bound improves upon the best currently known bounds for the first three problems by a factor of n2n2 or more and closes the gap to the state-of-the-art randomized complexity for the last problem.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Complexity - Volume 31, Issue 2, April 2015, Pages 206–236
نویسندگان
, ,