کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4608782 1338381 2009 14 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
On the weakening of the convergence of Newton’s method using recurrent functions
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات آنالیز ریاضی
پیش نمایش صفحه اول مقاله
On the weakening of the convergence of Newton’s method using recurrent functions
چکیده انگلیسی

We use Newton’s method to approximate a locally unique solution of an equation in a Banach space setting. We introduce recurrent functions to provide a weaker semilocal convergence analysis for Newton’s method than before [J. Appell, E. De Pascale, J.V. Lysenko, P.P. Zabrejko, New results on Newton–Kantorovich approximations with applications to nonlinear integral equations, Numer. Funct. Anal. Optim. 18 (1997) 1–17; I.K. Argyros, The theory and application of abstract polynomial equations, in: Mathematics Series, St. Lucie/CRC/Lewis Publ., Boca Raton, Florida, USA, 1998; I.K. Argyros, Concerning the “terra incognita” between convergence regions of two Newton methods, Nonlinear Anal. 62 (2005) 179–194; I.K. Argyros, Convergence and Applications of Newton-Type Iterations, Springer-Verlag Publ., New York, 2008; S. Chandrasekhar, Radiative Transfer, Dover Publ., New York, 1960; F. Cianciaruso, E. De Pascale, Newton–Kantorovich approximations when the derivative is Hölderian: Old and new results, Numer. Funct. Anal. Optim. 24 (2003) 713–723; N.T. Demidovich, P.P. Zabrejko, Ju.V. Lysenko, Some remarks on the Newton–Kantorovich method for nonlinear equations with Hölder continuous linearizations, Izv. Akad. Nauk Belorus 3 (1993) 22–26. (in Russian); E. De Pascale, P.P. Zabrejko, Convergence of the Newton–Kantorovich method under Vertgeim conditions: A new improvement, Z. Anal. Anwendvugen 17 (1998) 271–280; L.V. Kantorovich, G.P. Akilov, Functional Analysis, Pergamon Press, Oxford, 1982; J.V. Lysenko, Conditions for the convergence of the Newton–Kantorovich method for nonlinear equations with Hölder linearizations, Dokl. Akad. Nauk BSSR 38 (1994) 20–24. (in Russian); B.A. Vertgeim, On conditions for the applicability of Newton’s method, (Russian), Dokl. Akad. Nauk., SSSR 110 (1956) 719–722; B.A. Vertgeim, On some methods for the approximate solution of nonlinear functional equations in Banach spaces, Uspekhi Mat. Nauk 12 (1957) 166–169. (in Russian); English transl.:; Amer. Math. Soc. Transl. 16 (1960) 378–382] provided that the Fréchet-derivative of the operator involved is pp-Hölder continuous (p∈(0,1]p∈(0,1]).Numerical examples involving integral and differential equations are also provided in this study.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Complexity - Volume 25, Issue 6, December 2009, Pages 530–543
نویسندگان
, ,