کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4613894 1339274 2016 18 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Uniform Fatou's lemma
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات آنالیز ریاضی
پیش نمایش صفحه اول مقاله
Uniform Fatou's lemma
چکیده انگلیسی

Fatou's lemma is a classic fact in real analysis stating that the limit inferior of integrals of functions is greater than or equal to the integral of the inferior limit. This paper introduces a stronger inequality that holds uniformly for integrals on measurable subsets of a measurable space. The necessary and sufficient condition, under which this inequality holds for a sequence of finite measures converging in total variation, is provided. This statement is called the uniform Fatou lemma, and it holds under the minor assumption that all the integrals in the inequality are well-defined. The uniform Fatou lemma improves the classic Fatou lemma in the following directions: the uniform Fatou lemma states a more precise inequality, it provides the necessary and sufficient condition, and it deals with variable measures. Various corollaries of the uniform Fatou lemma are formulated. The examples in this paper demonstrate that: (a) the uniform Fatou lemma may indeed provide a more accurate inequality than the classic Fatou lemma; (b) the uniform Fatou lemma does not hold if convergence of measures in total variation is relaxed to setwise convergence.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Mathematical Analysis and Applications - Volume 444, Issue 1, 1 December 2016, Pages 550–567
نویسندگان
, , ,