کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4614662 1339296 2016 16 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Riemann integrability versus weak continuity
ترجمه فارسی عنوان
انعطاف پذیری ریمان در مقابل تداوم ضعیف
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات آنالیز ریاضی
چکیده انگلیسی

In this paper we focus on the relation between Riemann integrability and weak continuity. A Banach space X   is said to have the weak Lebesgue property if every Riemann integrable function from [0,1][0,1] into X   is weakly continuous almost everywhere. We prove that the weak Lebesgue property is stable under ℓ1ℓ1-sums and obtain new examples of Banach spaces with and without this property. Furthermore, we characterize Dunford–Pettis operators in terms of Riemann integrability and provide a quantitative result about the size of the set of τ-continuous nonRiemann integrable functions, with τ a locally convex topology weaker than the norm topology.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Mathematical Analysis and Applications - Volume 438, Issue 2, 15 June 2016, Pages 840–855
نویسندگان
,