کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4614669 1339296 2016 29 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
On Sobolev instability of the interior problem of tomography
ترجمه فارسی عنوان
در مورد بی ثباتی سوبولف از مشکل داخلی توموگرافی
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات آنالیز ریاضی
چکیده انگلیسی

As is known, solving the interior problem with prior data specified on a finite collection of intervals IiIi is equivalent to analytic continuation of a function from IiIi to an open set J. In the paper we prove that this analytic continuation can be obtained with the help of a simple explicit formula, which involves summation of a series. Our second result is that the operator of analytic continuation is not stable for any pair of Sobolev spaces regardless of how close the set J is to IiIi. Our main tool is the singular value decomposition of the operator He−1 that arises when the interior problem is reduced to a problem of inverting the Hilbert transform from incomplete data. The asymptotics of the singular values and singular functions of He−1, the latter being valid uniformly on compact subsets of the interior of IiIi, was obtained in [5]. Using these asymptotics we can accurately measure the degree of ill-posedness of the analytic continuation as a function of the target interval J. Our last result is the convergence of the asymptotic approximation of the singular functions in the L2(Ii)L2(Ii) sense. We also present a preliminary numerical experiment, which illustrates how to use our results for reducing the instability of the analytic continuation by optimizing the position of the intervals with prior knowledge.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Mathematical Analysis and Applications - Volume 438, Issue 2, 15 June 2016, Pages 962–990
نویسندگان
, , ,