کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4615381 1339314 2015 22 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Inverse spectral theory for uniformly open gaps in a weighted Sturm–Liouville problem
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات آنالیز ریاضی
پیش نمایش صفحه اول مقاله
Inverse spectral theory for uniformly open gaps in a weighted Sturm–Liouville problem
چکیده انگلیسی

Motivated by a PDE existence problem, we study the inverse problem for a weighted Sturm–Liouville operator LsLs associated with the eigenvalue problem y″+λs(x)y=0, where s   is a real-valued, periodic, even function that is bounded from below by a positive constant and belongs to the L2L2-based Sobolev space Hr[0,1]Hr[0,1], r≥1r≥1. Choosing gap lengths and gap midpoints as coordinates, we define a spectral map GG, that assigns to a coefficient s   the structure of the spectrum of LsLs. We find that GG is a real-analytic isomorphism locally around s=1s=1, which, in particular, implies the existence of coefficients s∈Hr[0,1]s∈Hr[0,1], r<3/2r<3/2, whose spectrum features band structure with all gaps uniformly open around the gap midpoints. This result paves the way for the construction of so-called breathers in nonlinear wave equations with such coefficients s  . Apart from the novelty of treating the inverse spectral problem for the full Banach scale Hr[0,1]Hr[0,1], r≥1r≥1, the local nature of our result allows more concise and transparent proofs. In particular, instead of using any preliminary transformations, we treat the weighted problem directly by adapting techniques used for Schrödinger operators with distribution potentials.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Mathematical Analysis and Applications - Volume 427, Issue 2, 15 July 2015, Pages 1168–1189
نویسندگان
, ,