کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4616333 | 1339346 | 2013 | 9 صفحه PDF | دانلود رایگان |

We introduce a complete set of vector harmonic functions in an invariant form, that is, in a form that is independent of any coordinate system. In fact, we define three vector differential operators of the first order which, when they act on a scalar harmonic function they generate three independent vector harmonic functions. Then, we prove the relative independence properties and we investigate the characterization of every harmonic as an irrotational or solenoidal field. We also prove that this set of functions forms a complete set of vector harmonics. Finally, we use these invariant expressions to recover the vector spherical harmonics of Hansen and to introduce vector ellipsoidal harmonics in R3R3. Our method can be applied to any other coordinate system to produce the corresponding vector harmonics.
Journal: Journal of Mathematical Analysis and Applications - Volume 405, Issue 2, 15 September 2013, Pages 652–660