کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4617875 1631569 2011 20 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Explicit formulas for Laplace transforms of certain functionals of some time inhomogeneous diffusions
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات آنالیز ریاضی
پیش نمایش صفحه اول مقاله
Explicit formulas for Laplace transforms of certain functionals of some time inhomogeneous diffusions
چکیده انگلیسی

We consider a process (Xt(α))t∈[0,T) given by the SDE dXt(α)=αb(t)Xt(α)dt+σ(t)dBt, t∈[0,T)t∈[0,T), with initial condition X0(α)=0, where T∈(0,∞]T∈(0,∞], α∈Rα∈R, (Bt)t∈[0,T)(Bt)t∈[0,T) is a standard Wiener process, b:[0,T)→R∖{0}b:[0,T)→R∖{0} and σ:[0,T)→(0,∞)σ:[0,T)→(0,∞) are continuously differentiable functions. Assuming ddt(b(t)σ(t)2)=−2Kb(t)2σ(t)2, t∈[0,T)t∈[0,T), with some K∈RK∈R, we derive an explicit formula for the joint Laplace transform of ∫0tb(s)2σ(s)2(Xs(α))2ds and (Xt(α))2 for all t∈[0,T)t∈[0,T) and for all α∈Rα∈R. Our motivation is that the maximum likelihood estimator (MLE) αˆt of α   can be expressed in terms of these random variables. As an application, we show that in case of α=Kα=K, K≠0K≠0,IK(t)(αˆt−K)=L−sign(K)2∫01WsdWs∫01(Ws)2ds,∀t∈(0,T), where IK(t)IK(t) denotes the Fisher information for α   contained in the observation (Xs(K))s∈[0,t], (Ws)s∈[0,1](Ws)s∈[0,1] is a standard Wiener process and =L denotes equality in distribution. We also prove asymptotic normality of the MLE αˆt of α   as t↑Tt↑T for sign(α−K)=sign(K)sign(α−K)=sign(K), K≠0K≠0. As an example, for all α∈Rα∈R and T∈(0,∞)T∈(0,∞), we study the process (Xt(α))t∈[0,T) given by the SDE dXt(α)=−αT−tXt(α)dt+dBt, t∈[0,T)t∈[0,T), with initial condition X0(α)=0. In case of α>0α>0, this process is known as an α  -Wiener bridge, and in case of α=1α=1, this is the usual Wiener bridge.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Mathematical Analysis and Applications - Volume 380, Issue 2, 15 August 2011, Pages 405–424
نویسندگان
, ,