کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4620338 1339460 2009 21 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Lagrangian approach to the study of level sets II: A quasilinear equation in climatology
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات آنالیز ریاضی
پیش نمایش صفحه اول مقاله
Lagrangian approach to the study of level sets II: A quasilinear equation in climatology
چکیده انگلیسی

We study the dynamics and regularity of the level sets in solutions of the semilinear parabolic equationut−Δpu+f∈aH(u−μ)in Q=Ω×(0,T],p∈(1,∞), where Ω⊂RnΩ⊂Rn is a ring-shaped domain, ΔpuΔpu is the p-Laplace operator, a and μ   are given positive constants, and H(⋅)H(⋅) is the Heaviside maximal monotone graph: H(s)=1H(s)=1 if s>0s>0, H(0)=[0,1]H(0)=[0,1], H(s)=0H(s)=0 if s<0s<0. The mathematical models of this type arise in climatology, the case p=3p=3 was proposed and justified by P. Stone in 1972. We establish the conditions on the initial data which guarantee that the level sets Γμ(t)={x:u(x,t)=μ} are hypersurfaces, study the regularity of Γμ(t)Γμ(t) and derive the differential equation that governs the dynamics of Γμ(t)Γμ(t). The analysis is based on the introduction of a system of Lagrangian coordinates that transforms the moving surface Γμ(t)Γμ(t) into a stationary one.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Mathematical Analysis and Applications - Volume 352, Issue 1, 1 April 2009, Pages 475–495
نویسندگان
, ,