کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4620895 1339474 2008 11 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
On linearly related sequences of derivatives of orthogonal polynomials
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات آنالیز ریاضی
پیش نمایش صفحه اول مقاله
On linearly related sequences of derivatives of orthogonal polynomials
چکیده انگلیسی
We discuss an inverse problem in the theory of (standard) orthogonal polynomials involving two orthogonal polynomial families (Pn)n and (Qn)n whose derivatives of higher orders m and k (resp.) are connected by a linear algebraic structure relation such as∑i=0Nri,nPn−i+m(m)(x)=∑i=0Msi,nQn−i+k(k)(x) for all n=0,1,2,…, where M and N are fixed nonnegative integer numbers, and ri,n and si,n are given complex parameters satisfying some natural conditions. Let u and v be the moment regular functionals associated with (Pn)n and (Qn)n (resp.). Assuming 0⩽m⩽k, we prove the existence of four polynomials ΦM+m+i and ΨN+k+i, of degrees M+m+i and N+k+i (resp.), such thatDk−m(ΦM+m+iu)=ΨN+k+iv(i=0,1), the (k−m)th-derivative, as well as the left-product of a functional by a polynomial, being defined in the usual sense of the theory of distributions. If k=m, then u and v are connected by a rational modification. If k=m+1, then both u and v are semiclassical linear functionals, which are also connected by a rational modification. When k>m, the Stieltjes transform associated with u satisfies a non-homogeneous linear ordinary differential equation of order k−m with polynomial coefficients.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Mathematical Analysis and Applications - Volume 347, Issue 2, 15 November 2008, Pages 482-492
نویسندگان
, ,