کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4620895 | 1339474 | 2008 | 11 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
On linearly related sequences of derivatives of orthogonal polynomials
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
آنالیز ریاضی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
We discuss an inverse problem in the theory of (standard) orthogonal polynomials involving two orthogonal polynomial families (Pn)n and (Qn)n whose derivatives of higher orders m and k (resp.) are connected by a linear algebraic structure relation such asâi=0Nri,nPnâi+m(m)(x)=âi=0Msi,nQnâi+k(k)(x) for all n=0,1,2,â¦, where M and N are fixed nonnegative integer numbers, and ri,n and si,n are given complex parameters satisfying some natural conditions. Let u and v be the moment regular functionals associated with (Pn)n and (Qn)n (resp.). Assuming 0⩽m⩽k, we prove the existence of four polynomials ΦM+m+i and ΨN+k+i, of degrees M+m+i and N+k+i (resp.), such thatDkâm(ΦM+m+iu)=ΨN+k+iv(i=0,1), the (kâm)th-derivative, as well as the left-product of a functional by a polynomial, being defined in the usual sense of the theory of distributions. If k=m, then u and v are connected by a rational modification. If k=m+1, then both u and v are semiclassical linear functionals, which are also connected by a rational modification. When k>m, the Stieltjes transform associated with u satisfies a non-homogeneous linear ordinary differential equation of order kâm with polynomial coefficients.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Mathematical Analysis and Applications - Volume 347, Issue 2, 15 November 2008, Pages 482-492
Journal: Journal of Mathematical Analysis and Applications - Volume 347, Issue 2, 15 November 2008, Pages 482-492
نویسندگان
M.N. de Jesus, J. Petronilho,