کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4679598 1634893 2008 10 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Predicted glide systems and crystal preferred orientations of polycrystalline silicate Mg-Perovskite at high pressure: Implications for the seismic anisotropy in the lower mantle
موضوعات مرتبط
مهندسی و علوم پایه علوم زمین و سیارات علوم زمین و سیاره ای (عمومی)
پیش نمایش صفحه اول مقاله
Predicted glide systems and crystal preferred orientations of polycrystalline silicate Mg-Perovskite at high pressure: Implications for the seismic anisotropy in the lower mantle
چکیده انگلیسی

We use first first-principle methods and the Peierls–Nabarro model to evaluate the resistance to glide, characterized by the Peierls stress, of glide systems for end-member MgSiO3 Perovskite at mantle pressures. [010](100) is the easiest glide system in Mg-Perovskite at all pressures. Peierls stresses increase systematically with pressure for all systems except [001](010), indicating the importance of lattice friction at lower mantle pressures. The ratio of the maximum Peierls stress for each system relative to the [010](100) value defines their critical resolved shear stress (CRSS). These CRSS are used in a visco-plastic self-consistent homogenization model to predict the evolution of crystal preferred orientations (CPO) during deformation of polycrystalline Mg-Perovskite. In axial compression, [100] tends to align with the compression direction, in agreement with in situ observations in axial compression experiments. In simple shear, [010] concentrates near the shear direction and (100), although more dispersed, tends to align near the shear plane, consistent with the dominant activity of the easier [010](100) system. The calculated seismic anisotropy for a 100% Mg-Perovskite aggregate using the CPO in simple shear and the elastic constants of MgSiO3 perovskite at lower mantle pressures and temperatures is weak (> 3% for P-waves with and > 2% for S-waves) and decreases with increasing temperature and pressure. P-waves show the fastest propagation parallel to the lineation and S-waves fast polarization is in the foliation at 38 GPa and normal to the lineation at 88 GPa. This weak anisotropy is consistent with global seismological observations of a nearly isotropic lower mantle. There are however two regions where strain-induced Mg-Perovskite CPO could contribute to anisotropy; a) low temperature regions in the uppermost lower mantle, where the predicted S-wave polarization anisotropy may attain 1.6% with a fast polarization parallel to the foliation, b) in high high-temperature domains in the D″ layer, where Mg-Perovskite may be the major stable phase, leading to polarization of fast S-waves normal to the lineation for propagation directions at high angle to the lineation and an apparent isotropy for all other propagation directions.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Earth and Planetary Science Letters - Volume 271, Issues 1–4, 15 July 2008, Pages 135–144
نویسندگان
, , , , ,