کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
468966 698275 2011 10 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Positive solutions of a 2n2nth-order boundary value problem involving all derivatives via the order reduction method
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر علوم کامپیوتر (عمومی)
پیش نمایش صفحه اول مقاله
Positive solutions of a 2n2nth-order boundary value problem involving all derivatives via the order reduction method
چکیده انگلیسی

This paper is mainly concerned with the existence, multiplicity and uniqueness of positive solutions for the 2n2nth-order boundary value problem {(−1)nu(2n)=f(t,u,u′,…,(−1)[i2]u(i),…,(−1)n−1u(2n−1)),u(2i)(0)=u(2i+1)(1)=0(i=0,1,…,n−1), where n≥2n≥2 and f∈C([0,1]×R+2n,R+)(R+≔[0,∞)). We first use the method of order reduction to transform the above problem into an equivalent initial value problem for a first-order integro-differential equation and then use the fixed point index theory to prove the existence, multiplicity, and uniqueness of positive solutions for the resulting problem, based on a priori estimates achieved by developing spectral properties of associated parameterized linear integral operators. Finally, as a byproduct, our main results are applied for establishing the existence, multiplicity and uniqueness of symmetric positive solutions for the Lidstone problem involving all derivatives.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computers & Mathematics with Applications - Volume 61, Issue 4, February 2011, Pages 822–831
نویسندگان
,