کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
469509 698321 2009 11 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
A globally convergent method based on Fischer–Burmeister operators for solving second-order cone constrained variational inequality problems
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر علوم کامپیوتر (عمومی)
پیش نمایش صفحه اول مقاله
A globally convergent method based on Fischer–Burmeister operators for solving second-order cone constrained variational inequality problems
چکیده انگلیسی

The Karush–Kuhn–Tucker system of a second-order cone constrained variational inequality problem is transformed into a semismooth system of equations with the help of Fischer–Burmeister operators over second-order cones. The Clarke generalized differential of the semismooth mapping is presented. A modified Newton method with Armijo line search is proved to have global convergence with local superlinear rate of convergence under certain assumptions on the variational inequality problem. An illustrative example is given to show how the globally convergent method works.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computers & Mathematics with Applications - Volume 58, Issue 10, November 2009, Pages 1936–1946
نویسندگان
, ,