کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
46977 46454 2011 8 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Electrocatalytic activity of Pt nanoparticles on a karst-like Ni thin film toward methanol oxidation in alkaline solutions
موضوعات مرتبط
مهندسی و علوم پایه مهندسی شیمی کاتالیزور
پیش نمایش صفحه اول مقاله
Electrocatalytic activity of Pt nanoparticles on a karst-like Ni thin film toward methanol oxidation in alkaline solutions
چکیده انگلیسی

The study prepared rugged Ni thin films for the study on electrocatalytic methanol oxidation reaction (MOR) in alkaline solutions. The rugged Ni thin film has a karst-like morphology, which provides a large surface area for Pt nanoparticle loading by pulse electrodeposition. Cyclic voltammetry measurements showed that the Pt/karst-Ni electrode had a high electrocatalytic activity toward MOR and CO tolerance in the KOH electrolyte. Ni(OH)2 formed on the Ni support during the potential scan can enhance CO tolerance of Pt nanoparticles via the bi-functional mechanism. The Langmuir–Hinshelwood and the Eley–Rideal mechanisms are used to elucidate the role of OH surface groups on the Ni support and OH− ions in the electrolyte, respectively, in the enhancement of the CO tolerance. XPS analysis indicates that negative charges transfer from the Ni support to Pt nanoparticles. The electronic interaction may modify adsorption properties of CO adspecies on the Pt catalyst; the modification allows easy CO electro-oxidation by OH species surrounding the Pt nanoparticles, either from the Ni support or from the alkaline solution. The synergistic effect of the bifunctional mechanism and the electronic interaction makes the Pt/karst-Ni structure a good catalytic electrode for MOR in the KOH solution.

Figure optionsDownload as PowerPoint slideHighlights
► Rugged Ni films were prepared as the Pt nanoparticle support for methanol oxidation study in KOH solutions.
► The Pt/Ni electrode demonstrates good methanol electrocatalytic activity and CO tolerance.
► Negative charge transfer occurs from the Ni hydroxides capped support to Pt nanoparticles.
► The great electrocatalytic activity of the electrode is ascribed to the charge transfer.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Applied Catalysis B: Environmental - Volume 104, Issues 3–4, 18 May 2011, Pages 382–389
نویسندگان
, , ,