کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
471498 698637 2016 7 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Eigenvalue clustering of coefficient matrices in the iterative stride reductions for linear systems
ترجمه فارسی عنوان
خوشه بندی ویژه ای از ماتریس ضریب در کاهش بار تکراری برای سیستم های خطی
کلمات کلیدی
کاهش استرس، سیستم خطی، ماتریس ضریب. قطر مورب، خوشه بندی اعداد صحیح
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر علوم کامپیوتر (عمومی)
چکیده انگلیسی

Solvers for linear systems with tridiagonal coefficient matrices sometimes employ direct methods such as the Gauss elimination method or the cyclic reduction method. In each step of the cyclic reduction method, nonzero offdiagonal entries in the coefficient matrix move incrementally away from diagonal entries and eventually vanish. The steps of the cyclic reduction method are generalized as forms of the stride reduction method. For example, the 2-stride reduction method coincides with the 1st step of the cyclic reduction method which transforms tridiagonal linear systems into pentadiagonal systems. In this paper, we explain arbitrary-stride reduction for linear systems with coefficient matrices with three nonzero bands. We then show that arbitrary-stride reduction is equivalent to a combination of 2-stride reduction and row and column permutations. We thus clarify eigenvalue clustering of coefficient matrices in the step-by-step process of the stride reduction method. We also provide two examples verifying this property.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computers & Mathematics with Applications - Volume 71, Issue 1, January 2016, Pages 349–355
نویسندگان
, , , ,