کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4753402 | 1416556 | 2017 | 6 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Engineering a family 27 carbohydrate-binding module into an Aspergillus usamii β-mannanase to perfect its enzymatic properties
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی شیمی
بیو مهندسی (مهندسی زیستی)
پیش نمایش صفحه اول مقاله
چکیده انگلیسی
A family 27 carbohydrate-binding module of a Thermotoga maritima β-mannanase (TmCBM27) was chosen from the carbohydrate-active enzyme database by computer-aided design, possessing the lowest binding free energy with mannopentaose. To improve the enzymatic properties of a glycoside hydrolase family 5 β-mannanase from Aspergillus usamii (AuMan5A), two fusion β-mannanases, AuMan5A-F-M and AuMan5A-R-M, were designed by fusing a TmCBM27 into its C-terminus linked with a flexible peptide F (GGGGS)3 and rigid peptide R (EAAAK)3. Two fusion enzyme genes, Auman5A-F-m and Auman5A-R-m, were constructed as designed theoretically by overlapping PCR. Then, Auman5A and two fusion genes were expressed in Pichia pastoris GS115. Three recombinant β-mannanases, reAuMan5A, reAuMan5A-F-M and reAuMan5A-R-M, were purified to homogeneity with specific activities of 230.6, 153.3 and 241.7 U/mg. The temperature optimum of reAuMan5A-R-M was 70°C, identical with that of reAuMan5A, while its thermostability and melting temperature (Tm) reached 68°C and 74.9°C, being 8.0°C and 8.4°C higher than those of the latter, respectively. Additionally, the Km values of reAuMan5A-R-M, towards locust bean gum, konjac gum and guar gum, significantly decreased to 0.9, 1.9 and 2.5 mg/mL from 1.7, 3.8 and 4.2 mg/mL of reAuMan5A, while its kcat/Km (catalytic efficiency) values increased to 287.8, 163.7 and 84.4 mL/mgâ
s from 171.2, 97.6 and 56.0Â mL/mgâ
s of the latter, respectively. These results verified that the fusion of a TmCBM27 into the C-terminus of AuMan5A mediated by (EAAAK)3 linker contributed to its improved thermostability and catalytic efficiency.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Bioscience and Bioengineering - Volume 123, Issue 3, March 2017, Pages 294-299
Journal: Journal of Bioscience and Bioengineering - Volume 123, Issue 3, March 2017, Pages 294-299
نویسندگان
Jianfang Li, Chunjuan Wang, Die Hu, Fengjiao Yuan, Xueqing Li, Shihan Tang, Minchen Wu,