کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4764707 1423740 2017 35 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Machine learning model and optimization of a PSA unit for methane-nitrogen separation
موضوعات مرتبط
مهندسی و علوم پایه مهندسی شیمی مهندسی شیمی (عمومی)
پیش نمایش صفحه اول مقاله
Machine learning model and optimization of a PSA unit for methane-nitrogen separation
چکیده انگلیسی
In this work we study the separation of N2/CH4 in a bed packed with silicalite. Pressure swing adsorption (PSA) is a competitive technology for this task. Predicting PSA performance is a time consuming computational intensive problem. Direct optimization of the system of differential algebraic equations (DAE) describing the phenomena takes an impractical amount of time. We then analyze the suitability of using artificial neural networks (ANN) as a surrogate model to predict and optimize the PSA performance. Using the ANN surrogate model, optimization time decreased from 15.7 h to 50 s. We demonstrate that the PSA cycle proposed can achieve an optimized 99.5% nitrogen purity stream from an 85% inlet stream and a 50% purity stream from a 10% inlet stream. We also show that nitrogen recovery can be at most 90%. We further carry out a multi-objective optimization to demonstrate the tradeoff curve between nitrogen purity and recovery.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computers & Chemical Engineering - Volume 104, 2 September 2017, Pages 377-391
نویسندگان
, , , ,