کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4937680 | 1434623 | 2017 | 10 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Frequent itemset mining using cellular learning automata
ترجمه فارسی عنوان
استخراج مؤلفه های مکرر با استفاده از اتوماتای یادگیری سلولی
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
استخراج مزارع مکرر، اتوماتای سلولی، داده کاوی، قوانین انجمن، استخراج مکرر مکرر،
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
نرم افزارهای علوم کامپیوتر
چکیده انگلیسی
A core issue of the association rule extracting process in the data mining field is to find the frequent patterns in the database of operational transactions. If these patterns discovered, the decision making process and determining strategies in organizations will be accomplished with greater precision. Frequent pattern is a pattern seen in a significant number of transactions. Due to the properties of these data models which are unlimited and high-speed production, these data could not be stored in memory and for this reason it is necessary to develop techniques that enable them to be processed online and find repetitive patterns. Several mining methods have been proposed in the literature which attempt to efficiently extract a complete or a closed set of different types of frequent patterns from a dataset. In this paper, a method underpinned upon Cellular Learning Automata (CLA) is presented for mining frequent itemsets. The proposed method is compared with Apriori, FP-Growth and BitTable methods and it is ultimately concluded that the frequent itemset mining could be achieved in less running time. The experiments are conducted on several experimental data sets with different amounts of minsup for all the algorithms as well as the presented method individually. Eventually the results prod to the effectiveness of the proposed method.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computers in Human Behavior - Volume 68, March 2017, Pages 244-253
Journal: Computers in Human Behavior - Volume 68, March 2017, Pages 244-253
نویسندگان
Mohammad Karim Sohrabi, Reza Roshani,