کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4944401 | 1437989 | 2017 | 25 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Minutiae-based fingerprint matching decomposition: Methodology for big data frameworks
ترجمه فارسی عنوان
تجزیه و تحلیل اثر انگشت مبتنی بر مولکولی: روش شناسی برای چارچوب داده های بزرگ
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
هوش مصنوعی
چکیده انگلیسی
Fingerprint recognition, and in particular minutiae-based matching methods, are ever more deeply implanted into many companies and institutions. As the size of their identification databases grows, there is a need of flexible, reliable structures for fingerprint recognition systems. In this paper, we propose a generic decomposition methodology for minutiae-based matching algorithms that splits the calculation of the matching scores into lower level steps that can be carried out in parallel in a flexible manner. The decomposition allows to adapt any minutiae-based algorithm to frameworks such as MapReduce or Apache Spark. General and specific guidelines to enhance the performance of the adapted matching algorithms are also described. The proposal is evaluated over two matching algorithms, two Big Data frameworks (Apache Hadoop and Apache Spark) and two large-scale fingerprint databases, with promising results concerning the identification time, in addition to the reliability, scalability, distribution and availability capabilities that are provided by such underlying frameworks.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Information Sciences - Volume 408, October 2017, Pages 198-212
Journal: Information Sciences - Volume 408, October 2017, Pages 198-212
نویسندگان
Daniel Peralta, Salvador GarcÃa, Jose M. Benitez, Francisco Herrera,