کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4944590 | 1437998 | 2017 | 32 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Vector coevolving particle swarm optimization algorithm
ترجمه فارسی عنوان
الگوریتم بهینه سازی ذرات گرد و غبار پیچیده
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
هوش مصنوعی
چکیده انگلیسی
In this paper, we propose a novel vector coevolving particle swarm optimization algorithm (VCPSO). In VCPSO, the full dimension of each particle is first randomly partitioned into several sub-dimensions. Then, we randomly assign either one of our newly designed scalar operators or learning operators to update the values in each sub-dimension. The scalar operators are designed to enhance the population diversity and avoid premature convergence. In addition, the learning operators are designed to enhance the global and local search ability. The proposed algorithm is compared with several other classical swarm optimizers on thirty-three benchmark functions. Comprehensive experimental results show that VCPSO displays a better or comparable performance compared to the other algorithms in terms of solution accuracy and statistical results.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Information Sciences - Volumes 394â395, July 2017, Pages 273-298
Journal: Information Sciences - Volumes 394â395, July 2017, Pages 273-298
نویسندگان
Qingke Zhang, Weiguo Liu, Xiangxu Meng, Bo Yang, Athanasios V. Vasilakos,